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Swirling flow through a pipe is a highly complex turbulent flow and is still 
challenging to predict. An experimental investigation is performed to obtain 
systematic data about the flow and to understand its physics. A free-vortex-type 
swirling flow is introduced in a long straight circular pipe. The swirling component 
decays downstream as a result of wall friction. The velocity distributions are 
continuously changing as they approach fully developed parallel flow. The swirl 
intensity SZ, defined as a non-dimensional angular momentum flux, decays 
exponentially. The decay coefficients, however, are not constant as conventionally 
assumed, but depend on the swirl intensity. The wall shear stresses are measured by 
a direct method and, except in a short inlet region, are a function only of the swirl 
intensity and the Reynolds number. The velocity distributions and all Reynolds 
stress components are measured at  various axial positions in the pipe. The structure 
of the tangential velocity profile is classified into three regions: core, annular and 
wall regions. The core region is characterized by a forced vortex motion and the flow 
is dependent upon the upstream conditions. In the annular region, the skewness of 
the velocity vector is noticeable and highly anisotropic so that the turbulent 
viscosity model does not work well here. The tangential velocity is expressed as a 
sum of free and forced vortex motion. In  the wall region the skewness of the flow 
becomes weak, and the wall law modified by the Monin-Oboukhov formula is 
applicable. Data on the microscale and the spectrum are also presented and show 
quite different turbulence structures in the core and the outer regions. 

1. Introduction 
At present much effort has been put into developing a more comprehensive 

turbulence model that is applicable to complex turbulent flow. At  the Stanford 
Conference on Complex Turbulent Flows (Klein, Cantwell & Lilley 198@1981), the 
general consensus was that the models presented did not suffice for predicting 
practical complex flows and needed improvement. Among the many factors which 
make up a complex flow, streamline curvature and/or three-dimensionality are 
important ones in the engineering fields. Many separate studies on the effects of these 
factors have been made in the past. For example, Eskinazi & Yeh (1956), So (1975) 
and Barlow & Johnston (1988) for curved flow, and Perry & Joubert (1965), 
Bradshaw (1971) and Van den Berg (1982) for three-dimensional flow. 

A swirling flow is a typical complex flow that is affected by streamline curvature 
and flow skewness in addition to adverse and favourable pressure gradients. Their 
combined effects on turbulence are quite unlikely to be described by a linear 
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combination of these factors. Thus, additional theoretical and experimental studies 
are needed now for such a highly complex flow. 

Kobayashi & Yoda (1987) attempted to  simulate numerically a swirling flow in a 
pipe by using a k--s model and indicated that the velocity profiles obtained were 
quite different from experimental ones. They concluded that the eddy viscosity 
components were anisotropic, and that this was the main reason for the disagreement. 
Computations based on a Reynolds stress model were performed by Gibson & Younis 
(1986) for a swirling jet and by Hirai et al. (1987) for a swirling flow within two 
concentric cylinders. These investigations met with some success in predicting the 
flow. However, these flows were simplified versions of the swirling flow in a pipe, 
because in one the wall effect was excluded and in the other had no core region. Lack 
of systematic experimental information makes it difficult for any modeller to 
compare his results with real data and thereby improve the model to predict the real, 
physical processes in the swirling flow through a pipe. 

The main objectives of this report are (a) to obtain systematic data including 
velocity distributions, wall shear stresses and full Reynolds stress components from 
up- to downstream sections and ( b )  to  discuss the velocity law and the turbulent 
quantities in terms of hitherto known models in order to help explain the behaviour 
of the swirling pipe flow. 

2. Theoretical background 
For engineering purposes it is important to understand the decay process of swirl 

intensity along the pipe. Many workers, including Baker (1967) and Seno & Nagata 
(1972), have reported an exponential decay formula for the swirl on the basis of the 
empirical results. 

For axisymmetric flow the swirl intensity Q, the non-dimensional angular 
momentum flux, is defined as 

UWr2 dr/pnr: Urn, (1) 

where U ,  W and Urn are the mean axial, tangential and bulk velocity, respectively, 
r and ro are radial position and pipe radius, and p is fluid density. This definition has 
found acceptance with many investigators. 

Because the swirl intensity decays owing to the tangential wall friction, we 
consider it first. Integrating the tangential momentum equation written in cylindrical 
coordinates ( r ,  #, x), with # and x the polar and axial coordinates, respectively, we 
obtain the tangential shear stress rrC as 

rrC ax 

where V is mean radial velocity and the lower case (u,v,w) indicates fluctuating 
velocities. The wall tangential shear stress normalized by the &Urn becomes 

d ‘oUWr2dr - 1 dQ _ -  k = 2  
&P, d(2/2r0) lo r: Vrn 2 d(x/2ro) ’ (3) 

Here UW %- m, v(aW/ax) is assumed. Downstream of the inlet region, rCw is expected 
to  be a function of the swirl intensity 52 and the Reynolds number Re (=  Urn d / v ,  d 
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is a pipe diameter) but not the inlet condition. If the Reynolds number is kept 
constant, T~~ can be expressed as 

For extremely small 52, only the first term is important. Substituting this relation 
into (3), the exponential decay formula can be obtained as 

Q=Q,exp 2 a , d  { 
whcre 0, and x, are the swirl intensity and the axial position of suitably selected 
reference point, respectively. This formula is the same as that assumed by others. To 
obtain the decay formula for large 0, we need an accurate relation between the 
tangential shear stress and the swirl intensity, a formula that for the present can be 
obtained only by experiments. 

The velocity in a pipe is the axial flow upon which the swirling components are 
superimposed. Thus the streamlines are spiral in the downstream direction and the 
turbulent structures are subject to the mixed effects of centrifugal force due to the 
streamline curvature and flow skewness caused by the non-uniform spiral pitch in the 
flow. Both of these effects on the turbulent flow have been investigated separately by 
many workers. 

Perry & Joubert (1965) and Bradshaw (1971) pointed out that although the body 
of the flow is significantly skewed there exists a thin shear layer close to the wall 
where the flow does not skew much and obeys the ordinary law of the wall. Backshall 
& Landis (1969) and Kit0 & Kato (1984) reported that the non-skewed layer very 
close to the wall was observed experimentally in a swirling pipe flows. In this thin 
layer, denoted as a wall region hereafter, the turbulence is affected by the streamline 
curvature alone. Bradshaw (1969) indicated that there exists a strong similarity 
between the effect of buoyancy and the streamline curvature, an effect which can be 
estimated as the change of the mixing length, in analogy with the Monin-Oboukhov 
formula developed for a stratified flow. By introducing the gradient Richardson 
number Ri, thc mixing length 1 can be expressed as 

1 = lo( 1 -pRi) (6) 

where p is a constant and 1, is the mixing length with no curvature effect. According 
to So (1975) the gradient Richardson number for the curved flow should be expressed 
as 

where V, = (u2 + W)) denotes the total velocity, y and R, are distance from the wall 
and local radius of curvature of the streamline, respectively. In the thin wall layer 
an inequality, y < R,, is also assumed. Close to the wall a steep velocity gradient 
prevails and the relation aV,/ay % &/Re holds with sufficient accuracy. The mixing- 
length formula then reduces to 

where 7 is a total shear stress. Integrating the equation, the following velocity law 

- In - +B + A V: 
V 
u* K v 

can be obtained : 
A =  1 YU* 

(9) 
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where u*, K and B are a friction velocity based on the total wall friction, KSrman 
and integration constants in the conventional log law, respectively. AV; denotes the 
deviation of the velocity from the log law and is expressed as 

where yo is the lower limit of the turbulent region and B is an additional integration 
constant. Thus AV: changes linearly with s" V,/u, dy/R, where - 2p is the constant 
of proportionality. 

Outside the wall region the skewness of the flow becomes noticeable and (6) no 
longer holds. Some insight into the flow skewness in this layer can be given by 
considering the transport equations of the Reynolds stress. In the skewed flow, the 
flow direction 8, shear direction 8, and velocity gradient direction Og do not coincide 
(Van den Berg 1982). The difference between 8, and Or can be estimated as 
follows. The transport equation for ED and "W can be written according to Launder, 
Reece & Rodi (1975) (referred to as the LRR model hereinafter). After boundary- 
layer-like approximations according to Hirai, Takagi & Matsumoto (1988), these 
equations become 

YO 

where k and e are the kinetic energy of the turbulent motion and its dissipation rate, 
and the constants in (11) and (12) are a = (8+Ci)/11, S =  (8Ci-2)/11, y = 
(30Ci - 2)/55, C, = 1.5 and Ci = 0.4. Diff qzj means the turbulent diffusion terms of 
qzj. According to the numerical work on a swirling flow in coaxial pipes, with the 
inner pipe rotating, the diffusion terms are negligibly small compared with other 
terms (see Hirai et al. 1988). For simplicity, we also assume that the material 
derivative terms D ( w ) / D t  are small enough to be neglected. Then the shear stress 
direction 8, = tan-l(vw/m) is approximated as 

, 

w -  - 
- (wz - v2) (2 -a) - S(u2 - w2) 

vw r 
m au - ( - 7+ a;;"+ 8 2 -  yk) 

ar 

tan8, = - x tan8,+ 

where 

Terms that include ED are neglected because of their smallness compared with other 
normal stress components, see results from $6. Unlike the eddy viscosity model, 
which predicts that the shear stress and velocity gradient are in the same direction, 
this relation shows that 8, and 8, are in general different. Depending on the second 
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term on the right-hand side, especially on the sign of aU/& and/or w2-v2, a complex 
angle relation is expected. 

The measured Reynolds normal stresses are convenient to use to check the quality 
of the turbulence models. One of the most important but difficult points is the 
modelling of a pressure-strain term which consists of the return-to-isotropy and the 
rapid parts. Each includes an empirical constant, C,  or C,, that should be determined 
from appropriate experimental results. Adopting the LRR simplified model for the 
rapid - -  part, and applying similar approximations to the transport equations for 3 
and v2+w2 as before, we obtain 

- _  

where 

au - au 
ar 'k ar 

0 = - 2m-- C - (u, -$k) + 2C, m- +;C,P -%, 

At the radial positions where the mean strain rate vanishes, 

auiar = 0 or aW/ar- W / r  = 0, 

equations (14) and (15) reduce to a set of simple algebraic relations for the normal 

Adopting an elaborate version for the rapid part in the LRR model, the ?/k relation 
becomes 

- 
u2 2 2 
k 3 3C, 

= o ;  - = -+-(a+/?- 1). 
au 

at - 
ar 

It is now easy to compare the above relations with the experimental data. 

3. Experimental equipment and methods 

Two different types of facilities have been used for measuring different variables. 
One is a system using air as working fluid to measure the velocity and the Reynolds 
stress distributions by means of a hot-wire anemometer. The other adopts water as 
the working fluid in order to measure the wall shear stress and the decay of angular 
and axial momentum fluxes along the pipe. 

Figure 1 shows the general arrangement of the equipment for the air flow 
experiment. The test pipe is 150 mm in internal diameter d and 7000 mm long, 
having a hydraulically smooth surface. A t  the upstream end of the pipe there is a 
settling chamber in which a swirling generator is installed. A blower driven by a 
variable-speed motor and a venturi meter for measuring flow rate are connected at 
the downstream end. The axial position x is defined as the distance from the inlet 
section of the pipe. The swirling component is generated by 24 guide vanes in the 
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FIGURE 1. Experimental apparatus. Dimensions in mm. 

Test section (TS) 
Xld 

Run 1, Re = 6 x lo4 
Run 2, Re = 6 x lo4 
Run 3, Re = 6 x lo4 
Run 4, Re = 6 x lo4 
Run 5, Re = 4 x lo4 
Run 6, Re = 8 x lo4 
Run 7, Re = 5 x lo4 
Run 8, Re = 5 x  lo4 
Run 9, Re = 5 x lo4 
Run 10, Re = 5 x lo4 

1 
5.7 

2 3  
7.7 12.3 

1.42 - 
0.71 - 
0.28 - 

- 1.18 
~ 0.83 
- 0.59 
- 0.24 

4 
14.3 

1.18 
0.58 
0.24 

5 
19.0 

6 7  
21.0 25.7 

0.89 - 

0.53 - 
0.21 - 

_ -  

- 0.79 
~ 0.60 
- 0.43 
- 0.18 

8 
28.0 

0.68 

9 10 
32.4 39.0 

0.64 0.57 
0.35 0.36 
0.12 0.15 

0.16 - 
0.57 

0.47 0.42 
- 0.36 
- 0.12 

- 

11 
43.3 
- 

0.30 
0.14 
0.11 
0.07 

TABLE 1. Velocity measuring sections and swirl intensities. The numbers indicate swirl 
intensity a. 

generator along which the flow passes radially inward. The vane angle can be fixed 
by pins at  10' intervals from zero to 60" with respect to the radial direction. Six 
different swirl intensities can be obtained. The bell-shaped cone at  the centre of the 
swirler smoothly deflects the radial flow in the axial direction (Yajnik & Subbaiah 
1973). The flow rate can be adjusted by controlling the variable-speed motor. The 
experimental Reynolds numbers Re based on the average bulk velocity Urn and pipe 
diameter d are 40000, 50000, 60000 and 80000. 

The measuring sections are prepared at the axial positions along the pipe shown 
in table 1, at each of which there is a probe inserting hole. The measuring sections 
(test sections) are denoted by TS in the figures and tables. Various types of hot-wire 
probes are traversed radially through the hole to measure the mean velocities and the 
Reynolds stresses. For measuring the flow angle 8 and the time mean velocity, an 1- 
type hot wire made of tungsten (5 pm in diameter) having a sensing length of 1 mm 
is used. Both end regions of the wire are copper plated (25 pm in diameter). As shown 
later, the radial velocity is extremely small compared with the other components, so 
the velocity vector is almost parallel to the wall. Using the flow angle 8 and the 
resultant velocity V,, the axial and tangential velocity components U and W can be 
easily obtained. Figure 2 shows the velocity components and the coordinate system 
used. 
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Type 111 
I 

Type IV 

sv FV sv 

FIGURE 3. Types of x -wires used. 

The complete set of Reynolds stress components are measured using the four 
different types of x-wires shown in figure 3. They are similar in shape but have 
different orientations, i.e. every 45", along the probe axis. The measuring principle 
for the q is based on that of Muller (1982b). Fourteen sets of r.m.8. data of the 
fluctuating velocity obtained per measurement point from these probes, aimed in the 
local flow direction, are enough to obtain all i&C, components. The tilde indicates 
variables that are evaluated in the local coordinate system 2, y" and 2, where 2 is 
directed to the flow direction and ij normal to the wall. The transformation from the 
local to the laboratory system ( T ,  #, 2) can be made by simple algebra. 

The nonlinear response of the hot wire to the oncoming velocity causes some error 
in estimating the turbulent intensity. Muller (1982 b) .indicated that neglecting 
moments of the fluctuating velocity larger than the second induces some error when 

- 
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~ _ _ _ _ _ ~ ~ ~  ______~ ~ 

- - - - - -  
x-wire type .liz 3 d2 Cfi  66 fid 

I 0 0  0 
I1 0 0 0 
I l l  0 

IV 0 
O* o* o* _ _ _ _ _ _ ~  

TABLE 2. x -type hot wires and Reynolds stresses that can be measured. 
(* : Combination use of two probes.) 

the turbulent intensity exceeds 20 %. Also, since the sensor has a finite size, another 
error becomes appreciable when it is used in a region of steep velocity gradient, i.e. 
in the central region and regions close to the wall in a swirling flow. To estimate the 
accuracy of the measured Reynolds stresses, the redundant data from different sets 
of measurements - and another measuring method are compared. Table 2 shows the 
components of i&iij that can be measured by these probes. Figure 4 compares the 
measured data from different x -wire types, and it includes results from rotating a 
single wire (a method based on that of Bissonette & Mellor 1974). Consistency among 
the data is very good except in the regions close to the wall and the pipe axis. Arrows 
in the figure indicate the region of high turbulent intensity, larger than 20 or 10%. 
Thus we conclude that the measured Reynolds stress data are reliable within 
kO.001 UZ, except in the region of high turbulent intensity (> 10%) and steep 
velocity gradient. Hereafter the high-turbulence region (> 10%) is denoted by 
broken lines. 

For measuring the wall shear stress and the momentum fluxes, a test pipe of 
50.8mm inner diameter and 4000mm long is used with the same type of swirl 
generator but of reduced size placed at the upstream end. A three-hole cylindrical 
Pitot tube, 2.5 mm in outer diameter, is used to measure the velocity components U 
and W for evaluation of the non-dimensional angular momentum flux Q, the swirl 
intensity. In a swirling flow the wall shear stress is difficult to measure by the indirect 
method, which is based on the existence of the universal wall law. The wall law is 
modified by the centrifugal force due to the rotating motion of the fluid, and one 
cannot expect it to be a sound basis for indirect methods. 

Here a shear-stress meter based on the direct method is developed. Figure 5 shows 
the structure of the meter for the tangential wall shear stress T $ ~ .  The sensing 
element that is separated from the pipe system is suspended by two plate springs 
so that it can be rotated by a small amount around the pipe axis if a torque is applied 
to the element. The torque can be evaluated by measuring the rotation angle because 
a linear relation exists between them for a limited torque range. The rotation angle 
can be measured by the change of the distance between the target plate fixed on the 
element and the electric eddy current probe. There are many error sources for a direct 
shear stress meter as described by Allen (1977), and these sources are carefully 
removed in our meter. The stiffness coefficient of the spring is selected so that the 
torque resolution becomes as small as 8 x lo-' N m. The wall shear stress measured 
by this meter is the average over the element surface, which is 24mm in length 
(0.47d). The evaluated mean value does not coincide exactly with the local wall shear 
stress, because in general the swirling flow is axi-asymmetrical (Kito 1984), and the 
shear stress is distributed around the periphery of the pipe. To check the final 
accuracy of this meter, the well-defined laminar flow between two concentric 
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FIQURE 4. Accuracy of Reynolds stresses measured by x -wires. x -wire type : A, I; 0 , I I  ; 0 , 1 1 1 ,  
IV. -, Single rotating wire (Bissonette & Mellor 1974). Regions of turbulent intensity larger 
than 20% (-)) and 10% (---D). Error bars indicate an uncertainty band of *O.OOIVm. 

cylinders, the inner one rotating, is used. The measured torque coefficients coincide 
with the theoretical ones to within an accuracy of f 3.5 YO of the reading (20 : 1 odds). 
For measuring the axial wall shear stress 7zw, the same meter is used, except that 
eight music wires are used instead of the spring. The force resolution is 1.5 x N. 
The accuracy of the data is checked by measuring T,, in fully developed pipe flow 
and comparing with the Blasius or Nikradse formulae. The accuracy is estimated to 
be f 4 YO of the reading (20 : 1 odds). 
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I 1 

FIGURE 5. Wall-shear-stress meter: a, plate spring; b, sensing element of pipe; c, target plate; 
d ,  electric eddy current probe. 

4. Decay of swirl intensity and wall shear stress 
The definition of the swirl intensity D, a non-dimensional angular momentum flux, 

is different from that used by Yajinik & Subbaiah (1973) and Sen0 & Nagata (1972), 
for example. They defined it as the ratio of angular to  axial momentum flux. The 
numerical values, however, do not differ very much. A downstream change of the 
swirl intensity in either definition shows an exponential decay along the pipe axis as 
in equation (5). Sen0 & Nagata (1972) considered the effect of the pipe roughness and 
Baker (1967) and Padmanabhan & Janek (1980) studied the effect of the Reynolds 
number and inlet swirl intensity on the decay. 

Figure 6 shows the decay of D plotted on a semi-log map at Re = 50000 for various 
inlet swirl intensities, SZ being evaluated from the Pitot tube measurements. The 
abscissa x’ is defined as the distance from the virtual origin x,. The x, are selected so 
that each decay curve for a different inlet swirl intensity would fall along a single 
curve. The decay curve is approximately linear but has a ‘knee’ point a t  Q = 0.1. 
Thus the decay coefficient 2a, in (5) is expected to depend on the swirl intensity. A 
more detailed picture of the decay coefficient can be obtained from the relation 
between the tangential wall shear stress T+,, and Q. Figure 7 shows this relation, the 
former measured by the shear-stress meter, for various inlet swirl intensities. To 
obtain the data the shear-stress meter was successively moved from xld = 6.3 to  80.3 
in increments of 5d.  The data fall along a single curve, denoted by the solid line in the 
figure, irrespective of the different inlet swirl intensities except in the inlet region, the 
portions denoted by broken lines. The arrows on the line show the downstream 
direction. Thus T~~ can be expressed as a function of 52 except in the inlet region. The 
solid line has clear deflection points at D = 0.09,0.45 and a less clear one a t  52 = 0.04. 
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FIQURE 6. Decay of swirl intensity SZ along pipe axis at Re = 50000, x' is distance from the 
virtual origin 2,. Swirl intensity and distance at initial reference section (x/d = 23.4) ; 0,8 = 0.6, 
x,/d=O; A, a = 0 . 2 7 7 ,  x,/d=32; .,SZ=0.256,x0/d=36.1; A,SZ=0.173, x,/d=52.6; 0,  
G! = 0.102, x,/d = 70.2; a, a = 0.081, x,/d = 82.6. 

FIQIJRE 7. Relation between tangential wall shear stress and SZ. Initial swirl intensity estimated 
a tx /d=6 .3 :  Q), Q=0.966; @,0.631; 0,  0.431; a, 0.279; 0, 0.178; 0, 0.130; .,0.086. 
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FIQIJRE 7. Relation between tangential wall shear stress and SZ. Initial swirl intensity estimated 

a tx /d=6 .3 :  Q), Q=0.966; @,0.631; 0,  0.431; a, 0.279; 0, 0.178; 0, 0.130; .,0.086. 
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Re = 50000 Re = 100000 Re = 150000 

sz 2-4, B6 2-4, B6 2-46 B6 
0-0.04 -0.038 0 -0.0291 0 -0.0282 0 

0.04-0.09 -0.0274 -0.OOO 131 -0.0227 -0.000 128 -0.0206 -0.000 13 
0.04-0.45 -0.0208 -0.000425 -0.0187 -0.000313 -0.0152 -0.000406 
0.45-0.80 -0.0277 0.000987 -0.0257 0.0119 -0.0253 0.001 6 

TABLE 3. The coefficients 2A, and B, in the relation between T + ~  and a. 

3 -  

- 2 A i x  100 - 

I 1 I I 

1 2 5 10 15 

Re x 10-4 

FIGURE 8. Decay coefficient of a:  0,  -2A,; 0,  -2-4,; A, -%I,; 0 ,  -2-4,; -, 
Baker’s (1967) result. 

The change of the slope at  52 = 0.09 corresponds to the knee point in figure 7, but 
those at 0.45 and 0.04 have no clear corresponding points on the swirl decay curve. 
If we assume piecewise linear relations between the knee points, r4, can be expressed 
as r4,/$pPm = AiQ+Bi ,  i = 1 , .  . . ,4 .  

The constants A ,  and B, are tabulated in table 3. Using the linear relation of T+, with 
Q, the decay formula can be expressed as 

log@+:) = 2At7+log Qr+- . 
x-xr ( 3 

The exponential decay law is correct only in the range 0 < 52 < 0.04, because B, = 0 
here. When B, < A , ,  the exponential decay law holds approximately and 24, is 
nearly equal to a decay coefficient, 2a1. Figure 8 compares the coefficients 2A, to the 
decay coefficient reproduced from Baker’s (1967) diagram. Basically, it decreases 
with Re. The difference of 2A, for various ranges of 52 is significant; in the range 
0.09 < 52 < 0.45, 24, is especially small compared with those for different Q. 

The variations of the axial wall shear stress r,, with 51 for three Re values are 
shown in figure 9. r,, increases noticeably with 52, and is almost double the zero-swirl 
value at 52 = 0.55. The Reynolds-number dependence of the wall shear stresses can 
be estimated by considering the variation of a friction factor of the pipe, A, with Re 
like 
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FIGURE 9. Relation between axial wall shear stress and 0 :  0,  Re = 50000; 0, Re = 100000; 
A, Re = 150000. 
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FIGURE 10. Shear-stress direction at the wall measured by the shear-stress meter. 0,  Re = 5OOOO; 
-, Re = 100000; -----, Re = 150000; 0 ,  streamline direction at the wall measured by a hot- 
wire anemometer. 
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which is within an accuracy of +2  YO in the range of 5 x lo4 < Re < 15 x lo4. A 
similar relation holds for tangential shear stress to within f 5 YO accuracy. The shear- 
stress direction 8, a t  the wall changes with 52 and the relations measured by the 
shear-stress meter are shown in figure 10. The limiting streamline angles with respect 
to the pipe axis measured by a hot-wire anemometer are also included in the figure. 
The overall agreement between the two methods is good. Some scatter of the data 
from the hot wire is seen a t  around 52 = 0.2. Kit0 (1984) reported that axisymmetry 
of the velocity profile fails near 52 = 0.2, so that the local streamline direction a t  the 
wall also becomes asymmetrical with respect to  the pipe axis, and this appears to be 
the main reason for the scatter of the data from a hot wire. 

The wall shear stress data 74w and 7,, presented here are average values over the 
pipe circumference and would be appropriate for comparing with the results of a 
numerical simulation of swirling flow, for in numerical work it is usually assumed 
that the time-mean values are axisymmetrical. 

5. Velocity distributions 
Figure 11 (a ,  b)  shows the profiles of tangential and axial velocity distributions W ,  

U at various stations along the pipe axis as measured by a hot-wire anemometer. 
From the shape of the tangential velocities the swirling flow has a three-region 
structure consisting of wall, annular and core regions. In  the wall region the velocity 
gradient is quite steep and, as described later, the flow skewness here is negligibly 
small. The annular and core regions are characterized by free- and forced-vortex- 
type velocity distributions, respectively. In  the figure the distribution of a pure 
forced-free vortex model (Rankin’s combined vortex) is shown for comparison. 
Except in the region around the meeting point of two vortices, the Rankin vortex is 
a reasonable qualitative model of the tangential velocity distribution unless 52 is too 
low. The extent of each vortex region changes in accordance with the swirl intensity. 
In a weak swirl, 52 less than 0.2, the boundary between the core and annular regions 
becomes obscure, and finally, when 52 < 0.1, the forced-vortex-type motion 
dominates the whole section. 

Pressure within the section can be estimated from 

P = P w - p r { T - - - (  w l a  - } 
r ar rv2) dr  

where 3 < W is assumed. Using the turbulence data to be given later, the effect of 
normal stress on the pressure distribution is less than 3%. The wall pressure P, is 
measured as a mean value from four pressure holes that are equally spaced around 
the circumference. Figure 12 shows the pressure distributions across the section. 
Owing to  the swirl decay along the pipe axis, the centrifugal force weakens and 
adverse and favourable pressure gradients appear in the centre and outer regions, 
respectively. These pressure gradients have a considerable effect on the axial velocity 
distributions, i.e. a low velocity in the centre region surrounded by high velocity in 
the annular region, figure 11 ( b ) .  When the swirl intensity is larger than 0.4, in our 
experiment, the reverse flow appears a t  the centre and its magnitude and the area 
increase as 52 increases. 

The radial velocity V is estimated from a continuity equation 
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FIGURE 12. Pressure distribution across a section. P, is a reference pressure (=P,(x/d = 41.1)). 
For symbols, see figure 11 .  

and the distributions of V in a cross-section are shown in figure 11 (c). The magnitude 
of V is of order 1/1000 of the average axial velocity Urn, and the total velocity 
direction is considered to be almost parallel to the wall surface. 

5.1. Wall region 

Figure 13 examines the skewness of the flow close to the wall by plotting U versus 
W .  Up to some point from the wall the flow angle does not change, collateral flow, 
and it then changes gradually as the wall distance increases. For a three-dimensional 
flow developed on a flat plate, Johnston (1970) and Perry & Joubert (1965) reported 
that the edge of the constant-flow-angle region is at 6CL100, or 150 in the wall 
variable y+. Here this edge point is situated at  around 60. The centrifugal force is the 
dominant term that affects the flow within this constant-angle region. Figure 14 (a+) 
shows semi-log plots of V, for (a)  weak, ( b )  moderate and (c) strong swirl intensity and 
in comparison with the conventional log law. The friction velocity is estimated from 
the velocity gradient at  the wall. In the range 0 < D < 0.11 the velocities follow the 
conventional log law up toy+ x 200 and the streamline curvature has no effect on the 
flow. For swirl intensity larger than SZ > 0.3, the data (y' < 1000) fall along a single 
curve with a smaller slope than the conventional curve, irrespective of the swirl 
intensity. This means that the centrifugal force effect on the turbulence is saturated 
when SZ exceeds 0.3. In  the intermediate swirl intensity range, the slope changes 
gradually with Q. Thus, within the rather narrow range of D from 0.1 to 0.3, the 
centrifugal force effect on the turbulence starts and reaches saturation. 

The deviation of the velocity from the log law AV; can be expressed by equation 
(10). The excess value of the velocity AV; is plotted in figure 15 against l/R,soy 
(V,/u,) dy. Here the lower limit of the integration is zero instead of yo, which results in 
only a small change in the abscissa. In the range 0.02 < 1/R, soy (V,/u,) dy < 0.1 the 
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FIGURE 13. Flow skewness in the near-wall region. Run 1 : 0 ,  TS 6; 8, TS 9. Run 2 :  0,  TS 9. 

Run 3: V, TS 9. 

data for AV; fall on a line of slope - 12. The furthest extent of the validity of (lo), 
i.e. the wall region, is thus considered to be the y-coordinate that gives an integral 
value of 0.1. According to (lo), this result shows that the constant /3 = 6. The 
constant in the Monin-Oboukhov formula has been reported by many workers for a 
flow passing through a curved or rotating channel and it is distributed in the range 
2 < /3 < 7 for small Richardson number. An overall review for /3 was given by So 
(1 975) and he recommended /3 = 2.5 from among the many previously proposed 
values. The result obtained here is not consistent with So but it is the same as that 
obtained by Johnston, Halleen 6 Lezius (1972) for rotating channel flow. 

The slope of the log formula in the semi-log diagram, equal to the inverse of the 
Karman constant 1 / ~ ,  changes as the streamline curvature effect appears. Here the 
change of K with B can be used as a measure of the curvature effect on the flow in 
the wall region (figure 16). From S2 = 0.1 to around 0.3-0.4 it increases from the 
known value of 0.41 to the final value of 0.725. 

The change of the Richardson number with S2 is interesting, for it also expresses 
quantitatively the curvature effect. The figure also shows the change of -Ri 
estimated at  y+ = 100 with Q. The magnitude of Ri increases from 0.05 at Q = 0.1 
to a final value of 0.27 at S2 = 0.4-0.5. The curve is very similar with that of K .  The 
curvature effect is almost saturated a t  around SE = 0.4-0.5. Although there exists 
some scatter in the data points, -Ri at S2 = 0.1 is about 0.05. Townsend (1976) 
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FIGURE 16. Effects of swirl intensity 52 on the KBrmLn constant K ,  Richardson number Ri and 
radius of streamline curvature R,: -0-, K ;  ---n----, Ri at y+ = 100; ----, R,; 

, above this Ri line, the effect of centrifugal force on the flow becomes appreciable, 
Townsend (1976). 

suggested that the curvature effect becomes appreciable when pi1 2 0.05. This 
suggestion is consistent with the present result that the centrifugal force becomes 
important if l2 exceeds 0.1. Such a rapid change of K or Ri from l2 = 0.1 to 0.5 and 
its almost levelling off beyond 0.5 can be explained by the change of radius of 
streamline curvature with 52. The radius of streamline curvature R, at the wall can 
be estimated as @/(sinz 8) .  Using the data for 8 in figure 10, the R, curve in figure 16 
wa.n  ent,ima.t.ed From .O = 0 1 t,n n 2 R denrc?a.nen ra.nidlv a,a B innreasen hiit, its 

7 --- --- - - ~ - - - ~  -I -- ---------- -"c --------- ..-l -I I-___-I--. ---___ -- "._ I- ".-, 
reduction rate becomes smaller. Beyond 52 = 0.5, R, does not change so much and 
the curvature effect is almost saturated there. 

5.2. Annular region 
Figure 17 shows the distributions of 0,0, and 8, (i.e. flow, velocity gradient and shear 
stress angles, respectively). The hatched region in the figure indicates the wall region 
and the three angles coincide there. Beyond the wall region in the annular region, 
different angle relations become noticeable : OS and 0, change rapidly along r ,  whereas 
changes in 8 are slower. Thus, in this region the flow and shear directions skew and 
the three angles do not coincide with each other. The turbulent motion contains the 
skewness effect in addition to the curvature effect. We cannot expect the simple 
mixing-length model of turbulence to work well here. 

In this region the tangential velocity approximates a free-vortex-type distribution. 
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FIQURE 17. Relations among angles 8, 8, and 8,. Rue 8_TS 7 :  0,  8 ;  0 ,  8,; A, 8,; ----, radial 
position of aU/ar = 0;  radial position of w2-va = 0. Shaded region is the wall region. 

As the swirl decays downstream, the velocity distribution changes from a free vortex 
to a forced vortex type. For a nearly plane swirling flow (the axial gradient is very 
small compared to the radial gradient) Reynolds (1961) indicated that a free-vortex- 
type flow is expected from an order estimation of the momentum equation. This 
estimation was substantiated by the work of Hirai et al. (1987) who measured the free 
vortex motion in a plane swirling flow within two concentric cylinders, the inner one 
rotating and the axial velocity component being superimposed on it. In the swirling 
flow decaying downstream, however, the effect of axial transport of momentum 
becomes important as shown later and the momentum balance among many terms 
becomes more complicated than in the plane swirling flow case. In this case we 
cannot say anything about the velocity distributions from a theoretical standpoint. 
From a phenomenological point of view, we assume that the tangential velocity in 
the decaying swirling flow can be expressed as a modification of the plane swirling 
flow like w c  

- urn = -+f(k), r l ro  

where f ( r )  is some modification function of r to be added to the free vortex. After 
trying various forms of f ( r )  and considering that the final state of the tangential 
velocity is a forced vortex,f(r) should be a linear function of r : f ( r )  = wr/ro .  Equation 
(19) indicates that the tangential velocity can be expressed as a sum of free and 
forced vortices. The constants C and w in (19) depend on SZ. These constants can 
be estimated from the measured tangential velocity in the annular region 
(0.5 < r / r o  < 0.9) using a least-squares method. 

Figure 18 shows the variation of the constants C and w with a, obtained from the 
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FIGURE 18. Variation of constants C and w in equation (19) with a. 
Present: 0,  C; 0,  w .  Sen0 & Nagata (1971): ., C; 0 ,  w .  

present data sets and Sen0 & Nagata’s (1971) experiments. It is interesting to note 
the nearly constant strength of the forced vortex component in the range 0.1 < 52, 
whereas the intensity of the free vortex decays linearly with 52. This means that when 
D > 0.1 the decay of tangential velocity is associated with the decay of free vortex 
motion only. The free-vortex component becomes zero when D = 0.1. It is only after 
52 < 0.1 that the forced-vortex motion begins to decay. 

5.3. Core region 
In the range 0 < r / rO  < 0.4-0.5, the tangential velocity has a forced-vortex-type 
distribution with a high angular velocity. If the outer edge of the core region is 
defined as the maximum tangential velocity point, then it moves inside the pipe as 
D decreases. 

According to the Rayleigh criterion (dldr) ( rW)2 > 0 for stability in relation to 
small perturbations, the velocity profile of this type has a strong stabilizing effect on 
the turbulence and the small-scale turbulent motion should die out rapidly. This 
situation is confirmed in the next section. Thus, in the core region large-length- and 
timescale motions prevail. In this region it is expected that the large-scale motion 
could persist for a long distance downstream and indicates some history effect on the 
flow. 

Figure 19 (a, b) compares the velocity distributions U and W which have nearly the 
same local swirl intensity but different upstream conditions, i.e. the flows were 
generated by different swirlers and have different inlet swirl intensities and axial 
lengths. For example, Weske & Sturov (1974) adopted a special swirler that 
generated pure forced vortex motion by rotating a grid. The central part of the 
velocity differs significantly for each case, whereas the profiles in the annular region 
are similar. These results indicate the long history effects in the core region. 
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present data sets and Sen0 & Nagata's (1971) experiments. It is interesting to note 
the nearly constant strength of the forced vortex component in the range 0.1 < 52, 
whereas the intensity of the free vortex decays linearly with 52. This means that when 
D > 0.1 the decay of tangential velocity is associated with the decay of free vortex 
motion only. The free-vortex component becomes zero when D = 0.1. It is only after 
52 < 0.1 that the forced-vortex motion begins to decay. 

5.3. Core region 
In the range 0 < r / rO  < 0.4-0.5, the tangential velocity has a forced-vortex-type 
distribution with a high angular velocity. If the outer edge of the core region is 
defined as the maximum tangential velocity point, then it moves inside the pipe as 
D decreases. 

According to the Rayleigh criterion (dldr) ( rW)2 > 0 for stability in relation to 
small perturbations, the velocity profile of this type has a strong stabilizing effect on 
the turbulence and the small-scale turbulent motion should die out rapidly. This 
situation is confirmed in the next section. Thus, in the core region large-length- and 
timescale motions prevail. In this region it is expected that the large-scale motion 
could persist for a long distance downstream and indicates some history effect on the 
flow. 

Figure 19 (a, b) compares the velocity distributions U and W which have nearly the 
same local swirl intensity but different upstream conditions, i.e. the flows were 
generated by different swirlers and have different inlet swirl intensities and axial 
lengths. For example, Weske & Sturov (1974) adopted a special swirler that 
generated pure forced vortex motion by rotating a grid. The central part of the 
velocity differs significantly for each case, whereas the profiles in the annular region 
are similar. These results indicate the long history effects in the core region. 
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FIQURE 19. Velocity distributions (a) W and (b) U having nearly the same swirl intensity but 
different upstream conditions. @, Present, Run 1, TS8; +, Sen0 & Nagata (1972), Q = 0.73, 
Re = 19 x lo4, x/d = 19; x , Weske & Sturov (1974), Q = 0.68, Re = 3 x lo4, x/d = 20. 

6. Turbulence measurements 
Figure 20 (u-f) shows the successive changes of the normal stresses 2 and their 

production P ( 2 )  from the upstream to the downstream direction measured by the 
x -wire system. In the figure the data of Weske & Sturov (1974) for swirling flow and 
Laufer (1952) for fully developed pipe flow, Re = 5 x  lo4, are also included for 
comparison. Weske & Sturov's curves are not very accurate, because reproduction 
from the original small-sized drawings _ -  causes considerable uncertainty. Owing to the 
excess turbulent production of v2, w 2  by the swirling velocity and 2 by the large axial 
velocity gradient in the core region (see table 4) every component has a larger energy 
than Laufer's data. Among the three components, 2 shows the most significant 
increase, becoming about three times larger than the parallel flow data when SZ = 
0.9. This might be a factor in an important practical application where a high heat 
transfer rate is observed in a swirling flow (Smithberg & Landis 1964). As a result of 
the high 3, the region v2-u2 > 0 appears in the annular region where the production 
terms of these terms are also P(w2) > P(u'). While the turbulent intensity in the 
annular region reduces graduallxas swirl decals, it increases in the core region. 

Table 5 shows the values of u2/k and ( 7 + w 2 ) / k  a t  positions of vanishing mean 
strain. Predicted values from the LRR and Gibson & Younis (1986) (GY) models, 
equations (16) and (17),  are compared in the table. For the empirical constants in the 
model, C, and C,, the LRR model adopted C ,  = 1.5 and C,  = 0.6 (Ci = 0.4 for an 
elaborate version) to  fit the data from homogeneous shear flow. The GY model 
adopted C ,  = 3 and C,  = 0.3 to include the effect of streamline curvature in the 

- -  
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- model. Both models predict (v2+w2)/k quite well. However, the predictcd values of 
u2/k are 20% lower than the experimental ones. This inconsistency is caused by 
the low C, which is a constant of the rapid term. In the absence of mean strain, 
aupr = 0, the rapid part &',P is the main source of 2 energy and a large C ,  is 
- required to fit theexperimental results. Theelaborate version ofthe LRR model predicts 
u2 /k  better. In this version a larger constant, a, of the rapid term is adopted. 

across the 
section. ?TO changes sign at  some radial position, but, unlike the result from the 
conventional eddy viscosity model, the position of the sign change does not coincide 
with the point au/ar = 0 indicated by arrows in figure 21 (a).  As a check, the shear 
stress ?TO is also estimated from the momentum balance equation, 

_ _  

Figure 21 (a+) show the distributions of the Reynolds shear stress 

-rXr 1 = -uv+v- - aU = U V + 1 1 r - ( . " ) d r + ' 1 r - ( - ) d r ,  a a p  
ar r ax r ax p P 

Each term except the viscous stress is shown in figure 22 (a) .  The consistency of the 
shear stress and the Reynolds stress is fairly good. The momentum flux change along 
x is almost balanced by the momentum transport by the radial velocity and the shear 
stress is nearly equal to the integral of thc pressure gradient across the section. 

The distributions of m are shown in figure 21 ( b ) .  The variation of various terms 
in the angular momentum balance equation (2) are shown in figure 22(b). In the 
annular region, convection terms of angular momentum in the axial and radial 
directions make nearly the same contributions to  the shear stress. 

The values of uw should be predominantly positive so that they can transfer 
angular momentum to the downstream section. The present results show that in the 
region 0.2 < r/ro < 0.6, uw has a large positive value, while in the range 0.6 < 
r / ro  < 0.9, where the tangential velocity is of the free-vortex type, small values of uw 
prevail. Gibson & Younis (1986) discussed the important role of uw in swirling jets 
as a production term in the transport equation of mi. They indicated that a positive 
uw was crucially important for obtaining an appropriate m distribution in predicting 
the flow. Figure 23 shows two production terms of m (i.e. v"au/ar and m W / r )  in the 
present case. Because of the large 3 and aU/ar, the former is significantly larger than 
the latter. This means that uw has a minor effect on m production, unlike the case 
for the swirling jet. 

Using the measured the eddy viscosities v,,,, v,+,. and vt+, are calculated from 
the following relations : 

Figure 24(a-c) shows the eddy viscosity distributions across the section. The data 
scatter widely, but show some relation with r .  The large anisotropy among the three 
components can be seen, ahd this result is consistent with Lilley & Chigier's (1971) 
report on the anisotropic nature of turbulent viscosity in swirling flow. Very close to 
the wall the anisotropy becomes weak. Kobayashi & Yoda (1987) adopted k--s 
model to simulate swirling flotk and concluded that the standard model did not 
predict the velocity distribution well. However, they could obtain a satisfactory 
result when an anisotropy factor at, was introduced in the relation vtij = aijCk+/-s. 
- Figure 25 indicates the ratio of shear stress to twice the turbulent kinetic energy 
q2, a, = (m2 +m2)i/?, for various swirl intensities. For a two-dimensional flow 
Bradshaw, Ferris & Atwell (1967) obtained good numerical results by putting a, = 
0.15. Recently Muller (1982~)  reported that even in a skewed boundary layer the 



468 0. Kitoh 

0.2 

Q,L 

0.1 

r -- 
11,1111111( 

0 0.5 1 .o 
r/ro 

0'3* 

0 0.5 1 .o 
r/r0 

0.5 1 .o 
r/r0 

1 1 1 1 

0 0.2 0.4 0.6 0.8 1.0 

r/r0 

FIGURE 20(a-d). For caption see facing page. 
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FIGURE 20 (a-f). Distributions of Reynolds normal stresses and their production. For symbols, 

see figure 11. ---, Laufer (1952); ----, Weske & Sturov (1974). 

Parallel flow 

au 
-2m- 
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au -m- 
ar 

-87 - v2 - 
ar 

0 

0 

TABLE 4. Production terms of turbulent kinetic energy. 
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LRR model 
GY 

- Experiment Simplified Elaborate model 

0.684 - 0.626 0.489 0.609 0.511 
UZ 
- at a U / a r = O  
k 

v2+w2 

k 

(Run 8. TS 1 - TS 10) 
- _  

1.098 at awl&- W / r  = 0 
(Run 10. TS 7)  

(Run 10, TS 10) 

TABLE 5. Comparison of q / k  predicted from Reynolds stress models and experiment. 

1.078 0.978 1.022 

factor a, is constant a t  0.15. For a two-dimensional curved flow, however, Gills & 
Johnston (1983) and Barlow & Johnston (1988) indicated that the factor ai is not 
constant through the boundary layer, with a trend that depends on whether the 
surface is convex or concave. On the concave side, unstable flow, a, increases over 
40% above 0.15, while on the convex side it decreases to under 0.15. In swirling flow 
ai is far from constant ; first i t  increases to 0.15 a t  r/ro = 0.9 from zero a t  the wall 
then decreases to 0.09 in the annular region. According to  the Rayleigh criterion, the 
tangential velocity distribution in the annular and core regions is stable as in the case 
of a boundary layer on a convex wall, Gills & Johnston (1983). The low value of ai 
in these regions could be attributed to the centrifugal stability effect, but clear 
evidence for this conclusion could not be given here. In  the core region ( r / r ,  < 0.4) 
the value decreases further. 

In the annular region of highly skewed flow, the shear and velocity-gradient angles 
differ from each other. According to  equation (13) the relation betwccn _ _  the two 
angles is dominated by the sign of the leading terms of aU/ar and (w2-v2)  in the 
annular region. Figure 17 shows the cross-sectional variation of Og and 0,. In  the 
annular _ _  region the curves of 0, and BS cross a t  two points. In  the figure the radial 
position w2 - v2 = 0 is indicated by a chain dot line which corresponds to the crossing 
point near the wall. Figure 26 compares the measured angle relation with the 
Reynolds stress model, equation (13), whcre the measured turbulence data are used 
in the model. The qualitative agreement is good. 

The turbulent character is expected to be different among the core, annular and 
wall regions because of the centrifugal stabilizing or destabilizing effect in the 
swirling flow. The W-distribution here satisfies the Rayleigh criterion for stability 
throughout the cross-section except close to the wall but we do not have any evidence 
of suppression of the fluctuating motion. Eskinazi & Yeh (1956) performed a two- 
dimensional curved flow experiment and their data indicated that the stable region 
estimated from the Rayleigh criterion did not exactly coincide with the area where 
the turbulent kinetic energy was absorbed by the mean velocity. I n  addition to the 
stabilizing/destabilizing effect of the tangential velocity, there is another energy 
source of the turbulence, production of 2, in the swirling flow. This additional energy 
source makes an important contribution to  the energy balance, making the situation 
more complex than two-dimensional curved flow. 

I n  the core region, because of the relation d(rW)2/dr >> 0, the stabilizing effect 
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FIGURE 21 (a+). Distributions of Reynolds shear stresses. Arrows in (a) indicate radial position 
of a U p r  = 0. For symbols, see figure 11.  

would be expected to be significant. Any clear evidence of stability, however, cannot 
be seen because the turbulent measurements around the axis include a large 
uncertainty. The tendency of low v2, w 2  found there for large L2 is the only sign of 
suppression of the radial and tangential fluctuating motion. 

_ _  
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FIGURE 22. (a) Balance of axial momentum flux across a section. Run 8 :  TS 7. 

( b )  Balance of angular momentum flux across a section. Run 8:  TS 7 

Figure 27 (a, b )  shows the time trace of the velocity fluctuation and its spectrum 
measured in the wall, annular and core regions. In the core region very low-frequency 
motion prevails, while in the outer regions the fluctuation includes high-frequency 
motion as expected in turbulent flow. The energy spectrum of the streamwise 
velocity also reflects this tendency. I n  the core region a peculiar frequency is 
observed and this might be the signal of an inertial wave generated by the rotating 
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FIGURE 23. Production terms for uw, Run 8. 

motion. The microscale of the turbulence A,, estimated on the assumption of the 
frozen turbulence and using the relation 

is shown in figure 28. It becomes very large in the core region when l2 is large, thus 
indicating the non-dissipative character of the motion here. 
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FIGURE 24. Distributions of eddy viscosities, Re = 50000. 

7. Concluding remarks 
The tangential velocity in swirling flow through a pipe has a significant influence 

on the flow structure. Among many factors that affect the flow, we limited 
consideration to thc ccntrifugal stabilizing/destabilizing effect, flow skewness and 
history effects. Based on the tangential velocity distribution, the flow has three 
regions : wall, annular and core. In the wall region only the centrifugal destabilizing 
effect appears and the classical mixing-length model modified by the Monin- 
Oboukhov formula can predict the flow there. The coefficient /3 is determined to 
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, "  

FIGURE 25. Ratio of shear stress ( E V * + E W ~ ) ~  to p. For symbols, see figure 11. ----, a, = 0.15. 

FIGURE 26. Comparison of relation between angles 0, and 8, between experiment and Reynolds 
stress model. Run 8, TS 7 : 0,  experiment ; x , Reynolds stress model. 
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FIQURE 27 (a). For caption see facing page. 

be 6 to fit the experimental data that is consistent with Johnston's (1970) result. The 
annular region is characterized by a flow skewness and angles 9, 9, and 9, that are 
different from one another. In this region the analytical approach to predicting the 
flow is quite difficult. A Reynolds stress model which can handle anisotropic 
turbulence is a more promising means to model the flow compared to an eddy 
viscosity model like k--E. The angle relation between 9, and 9, based on this model 
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FIQURE 27. (a) Time records of velocity fluctuation 4 at three radial positions: (i) r / rO  = 0.067 ; (ii) 
r/rO = 0.733, (iii) r/ro = 0.973. Run 7, TS 3. t in abscissa indicates time. ( b )  Energy spectrum of C2. 
Run 7, TS 3. k in abscissa indicates wavenumber. 0,  r/ro = 0.067 ; A, r / ro  = 0.733; 0, = 

0.973. 

FIQURE 28. Microscale distributions. For symbols, see figure 11. 
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FIQURE 27. (a) Time records of velocity fluctuation 4 at three radial positions: (i) r / rO  = 0.067 ; (ii) 
r/rO = 0.733, (iii) r/ro = 0.973. Run 7, TS 3. t in abscissa indicates time. ( b )  Energy spectrum of C2. 
Run 7, TS 3. k in abscissa indicates wavenumber. 0,  r/ro = 0.067 ; A, r / ro  = 0.733; 0, = 

0.973. 
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is qualitatively in agreement with the experiment. It is also noticeable that the 
tangential velocity could be expressed as a sum of forced and free vortex motions. In 
the core region, the centrifugal stabilizing effect becomes important, turbulent 
motion with very low-frequency prevails and the flow is non-dissipative. The inlet 
conditions have a large effect on the downstream flow in the core region. Thus for the 
core region there is a long history effect. 
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